
C++ Smart Pointers Ref Card – cppstories.com

Common
 Smart pointers are located in the <memory> header.
 Smart pointers are “smart” because they hold a

pointer to an object/resource plus they know the
ownership of the pointer. The are based on the RAII
pattern.

 unique_ptr and shared_ptr have overloaded
access operators * and ->, so smart pointers can be
dereferenced like regular raw pointers.

 Use .get() (on unique_ptr and shared_ptr) to
access the raw, underlying pointer.

 .get() is useful when you want to pass a pointer to
a function to “observe” the managed object
void useObject(MyType* pObj) { }
useObject(mySmartPtr.get());

 unique_ptr (since C++11) and shared_ptr (since
C++17) have template specialization for arrays
(delete[] will be called on clean up). This might be
helpful when you get a pointer to an array from
some third-party library or a legacy system. Still, if
possible, it’s better to use some standard containers
like std::vector or std::array.

 Reminder: don’t use auto_ptr! It has been
deprecated since C++11 and removed in C++17.
Replace it with unique_ptr.

 You can try with modernize-replace-auto-ptr
from Clang Tidy to automate refactoring.

 In C++17/C++20, there is no class template argument
deduction (CTAD) for smart pointers. It is impossible
for the compiler to distinguish a pointer obtained
from an array and non-array forms of new().

 Since C++20 there are atomic smart pointers
std::atomic<std::shared_ptr<T>> and
std::atomic<std::weak_ptr<T>>. C++20 also
deprecates global atomic functions for smart
pointers available since C++11.

 C++20 adds various *_for_overwrite creation
functions which take no constructor arguments and
use default-initialization (equivalent to new T). This
avoids unnecessary initialization in situations where
the initial value is never read (like reading into a
buffer)

References
cppreference.com/cpp/memory
CppCoreGuidelines/Resource
cppstories.com
C++20 changes - P2131

.

std::unique_ptr
A lightweight smart pointer that has the unique
ownership of a managed object.
 Unique pointer destroys the underlying object when

it goes out of scope, its reset() method is called or
is assigned with a new pointer/object.

 unique_ptr is movable, but not copyable.
 Usually, it’s the size of a single native pointer (for

stateless deleters, or two pointers when a pointer for
deleter is required).

Creation
Advised with auto and std::make_unique:
auto pObj = make_unique<MyType>(…)’
or with explicit new:
unique_ptr<MyType> pObject(new MyType(…))
but the type occurs twice here, and you need to use
raw new which is not considered a modern approach.

Custom deleters
A deleter is a callable object used to delete a resource.
By default it uses delete or delete[]. Type of the
deleter is part of the type of the unique_ptr.
struct DelFn {
 void operator()(MyTy* p) {
 p->SpecialDelete();
 delete p;
 }
};
using my_ptr = unique_ptr<MyTy, DelFn>;
 Deleter is not called when pointer is null
 get_deleter() can return a non const reference

to the deleter, so it can be used to replace it

Passing to functions
unique_ptr is movable only, so it should be passed
with std::move to explicitly express the ownership
transfer:
auto pObj = make_unique<MyType>(…);
func(std::move(pObj));
// pObj is invalid after the call!

Other
 reset() – resets the pointer (deletes the old one)
 unique_ptr is also useful in “pimpl” idiom

implementation
 unique_ptr is usually the first candidate to return

from factory functions. If factories gets more
complicated (like when adding caches), you might
then use shared_ptr (or weak_ptr)

std::shared_ptr
Multiple shared pointers can point to the same object,
sharing the ownership. When the last shared pointer
goes out of scope, the managed object is deleted. This
technique is implemented through reference counting.
 shared_ptr is copyable and movable
 it’s usually the size of two native pointers: one for

the object and one to point at the control block.
 The control block usually holds the reference

counter, weak counter, deleter and allocator.

Creation
Advised method is through std::make_shared():
auto pObj = make_shared<MyType>(…)
make_shared will usually allocate the control block
next to the Object, so there’s better memory locality.

Custom deleters
A deleter is stored in a control block and can be passed
during creation (not with make_shared()). Deleter is
not part of the type and can be anything callable.
void DelFn(MyTp* p) {
 if (p) p->OnDelete();
 delete p;
}
shared_ptr<MyTp> ptr(new MyTp(), DelFn);
 A deleter must cope with null pointer values. A

Deleter might be called when the pointer is empty.
 get_deleter() (non-member function) returns a

non const pointer to the deleter

Passing to functions
To share the ownership pass a shared pointer by value.
Reference counter is updated atomically, so you need
to be aware of the extra synchronisation cost.
std::move can be also used to transfer the
ownership.
To observe the object use .get().

Other
 The reference counter access is atomic but the

pointer access is not thread-safe.
 Use shared_from_this() to return a shared

pointer to *this. The class must derive from
std::enable_shared_from_this.

 Casting between pointer types can be done using
dynamic_pointer_cast,
static_pointer_cast or
reinterpret_pointer_cast.

 shared_ptr might create cyclic dependencies and
mem leaks when two pointers point to each other.

std::weak_ptr
Non-owning smart pointer that holds a "weak”
reference to an object that is managed by
std::shared_ptr. It must be converted to
std::shared_ptr to access the referenced object –
via the lock() method.
 One example where weak pointers are useful is

caching. Such system distributes only weak pointers,
and before any use, the client is responsible for
checking if the resource is still alive.

 A weak pointer is also used to break cycles in shared
pointers.

Creation
A weak pointer is created from a shared_ptr, but
before using it, you have to convert it to shared_ptr
again.
weak_ptr pWeak = pSharedPtr;
if (auto observe = pWeak.lock()) {
 // the object is alive
} else {
 // shared_ptr was deleted
}
 A weak pointer created from a shared pointer will

increase ‘weak reference counter’ that is stored in
the control block of the shared pointer. Even if all
shared pointers (referring to a single object) are
dead, but one weak pointer has a weak reference (to
that object) the control block might still be present in
the memory. This might be a problem when the
control block is allocated together with the object
(like when using make_shared). In that case, the
destructor of the object is called, but memory is not
released.

Other
 use_count() – returns the number of shared

pointers sharing the same managed object.
 Use expired() to check if the managed object is

still present.
 The weak pointer doesn’t have * and -> operators

overloaded, so you cannot dereference underlying
pointer before converting to shared_ptr (via
lock()).

See more about modern C++

© 2021 Bartlomiej Filipek, cppstories.com Updated: April 2021

https://wg21.link/P2131
https://wg21.link/P2131
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-resource
http://en.cppreference.com/w/cpp/memory
https://www.cppstories.com/
https://www.cppstories.com/

	Common
	References
	std::unique_ptr
	Creation
	Custom deleters
	Passing to functions
	Other

	std::shared_ptr
	Creation
	Custom deleters
	Passing to functions
	Other

	std::weak_ptr
	Creation
	Other

